Alkaline pH homeostasis in bacteria: new insights.
نویسندگان
چکیده
The capacity of bacteria to survive and grow at alkaline pH values is of widespread importance in the epidemiology of pathogenic bacteria, in remediation and industrial settings, as well as in marine, plant-associated and extremely alkaline ecological niches. Alkali-tolerance and alkaliphily, in turn, strongly depend upon mechanisms for alkaline pH homeostasis, as shown in pH shift experiments and growth experiments in chemostats at different external pH values. Transcriptome and proteome analyses have recently complemented physiological and genetic studies, revealing numerous adaptations that contribute to alkaline pH homeostasis. These include elevated levels of transporters and enzymes that promote proton capture and retention (e.g., the ATP synthase and monovalent cation/proton antiporters), metabolic changes that lead to increased acid production, and changes in the cell surface layers that contribute to cytoplasmic proton retention. Targeted studies over the past decade have followed up the long-recognized importance of monovalent cations in active pH homeostasis. These studies show the centrality of monovalent cation/proton antiporters in this process while microbial genomics provides information about the constellation of such antiporters in individual strains. A comprehensive phylogenetic analysis of both eukaryotic and prokaryotic genome databases has identified orthologs from bacteria to humans that allow better understanding of the specific functions and physiological roles of the antiporters. Detailed information about the properties of multiple antiporters in individual strains is starting to explain how specific monovalent cation/proton antiporters play dominant roles in alkaline pH homeostasis in cells that have several additional antiporters catalyzing ostensibly similar reactions. New insights into the pH-dependent Na(+)/H(+) antiporter NhaA that plays an important role in Escherichia coli have recently emerged from the determination of the structure of NhaA. This review highlights the approaches, major findings and unresolved problems in alkaline pH homeostasis, focusing on the small number of well-characterized alkali-tolerant and extremely alkaliphilic bacteria.
منابع مشابه
Alkalitolerance: a biological function for a multidrug transporter in pH homeostasis.
MdfA is an Escherichia coli multidrug-resistance transporter. Cells expressing MdfA from a multicopy plasmid exhibit multidrug resistance against a diverse group of toxic compounds. In this article, we show that, in addition to its role in multidrug resistance, MdfA confers extreme alkaline pH resistance and allows the growth of transformed cells under conditions that are close to those used no...
متن کاملThe voltage-gated Na+ channel NaVBP has a role in motility, chemotaxis, and pH homeostasis of an alkaliphilic Bacillus.
The prokaryotic voltage-gated Na(+) channel, NaChBac, is one of a growing channel superfamily of unknown function. Here we show that Na(V)BP, the NaChBac homologue encoded by ncbA in alkaliphilic Bacillus pseudofirmus OF4, is a voltage-gated Na(+) channel potentiated by alkaline pH. Na(V)BP has roles in motility, chemotaxis, and pH homeostasis at high pH. Reduced motility of bacteria lacking fu...
متن کاملpH-induced change in cell susceptibility to butanol in a high butanol-tolerant bacterium, Enterococcus faecalis strain CM4A
BACKGROUND Though butanol is considered as a potential biofuel, its toxicity toward microorganisms is the main bottleneck for the biological butanol production. Recently, butanol-tolerant bacteria have been proposed as alternative butanol production hosts overcoming the end product inhibition. One remaining key issue to be addressed is how physicochemical properties such as pH and temperature a...
متن کاملGlobal transcriptional response of the alkali-tolerant cyanobacterium Synechocystis sp. strain PCC 6803 to a pH 10 environment.
Many cyanobacterial strains are able to grow at a pH range from neutral to pH 10 or 11. Such alkaline conditions favor cyanobacterial growth (e.g., bloom formation), and cyanobacteria must have developed strategies to adjust to changes in CO2 concentration and ion availability. Synechocystis sp. strain PCC 6803 exhibits similar photoautotrophic growth characteristics at pH 10 and pH 7.5, and we...
متن کاملAcidic pH promotes oligomerization and membrane insertion of the BclXL apoptotic repressor.
Solution pH is believed to serve as an intricate regulatory switch in the induction of apoptosis central to embryonic development and cellular homeostasis. Herein, using an array of biophysical techniques, we provide evidence that acidic pH promotes the assembly of BclXL apoptotic repressor into a megadalton oligomer with a plume-like appearance and harboring structural features characteristic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1717 2 شماره
صفحات -
تاریخ انتشار 2005